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Abstract We studied the plasma oscillations of an electron gas and a hole gas in a GaAs doped 
superlattice. The doped superlattice is modelled to be a one-dimensional periodic sequence of 
electron and hole layers which are embedded alternately in a homogeneous polar dieleclric host 
medium.~The density-density correlation function has been calculated for a mcdel m c t w  in 
order to study the plasma-phononcoupled modes. The strong charge canier-impurity scattering 
which results from random doping impurities in the electron (hole) layers, has been taken into 
account by choosing appropriate polarizabilities for intrasubband-intersubband transitions and 
the harmonic oscillator wavefunctions as elemon (hole) envelope functions. Our calculation 
demonshares that the presence of random doping impurities in electron (hole) layers significantly 
affects both electron and hole plasmons. The well behaved plasma modes in a GaAs doped 
superlattice can be observed for restricted values of wavevector. In the 2D limiting case. the 
plasma frrsuency in a doped superlattice is approximately proportional to (q2 - q:)'/2, while 
for a modulation doped superlattice (such as Ga,Inl,As/GaAs,Sbl-,) it is proportional to 
q, for small q-values. qc is the critical value of the in-plane wavevector 4. Our calculated 
lineshapes of coupled plasmon-phonon modes can be well sepanted from each other and could 
have reasonable half-widths and peak heights which could be observed exDerimentally for the 
right choice of values for the parameters of the doped superlattice. 

1. Introduction 

A doped semiconductor superlattice (DSSL) consists of a one-dimensional periodic sequence 
of alternating doping of impurities in a homogeneous dielectric background. The periodic 
potential in a DSSL is caused by the spacecharge-induced potential of the doped ionized 
impurity, and it origbiates from the band-gap discontinuity in the case of a compositional 
semiconductor superlattice (CSSL). The space-charge potential in a DSSL modulates the 
band edges of the host material such that nearly perfect separation of electrons and holes can 
be achieved. The electron-hole recombination lifetimes can therefore be greatly enhanced 
by the right choice of design parameters, such as the doping concentrations and the electron 
(hole) layer thickness [1,2]. The separation of the electron (hole) into nmow layers causes 
splitting of conduction and valence bands into quasi-two-dimensional (ZD) subbands, whose 
spacingcan be tailored by choosing appropriate design parameters. Therefore, a quantum 
phenomenon can be observed very well in a DSSL [3,4]. 

The plasma frequency is one of the key parameters in characterizing a material. A study 
of plasmons and the plasmon-phonon-coupled modes reveals several inherent characteristics 
of a material. In view of this, numerous experimental as well as theoretical studies of 
plasmons and plasmon-phonon-coupled modes have been performed for modulation doped 
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CSSLs [5-161. However, relatively less attention has been paid to both experimental and 
theoretical studies of plasmons and plasmon-phonon-coupled modes in a DSSL. This might 
be because of suspected unfavourable properties associated with the diffusion of doped 
impurities which act as centres of free-carrier scattering [17]. Detailed theoretical studies 
on the electronic and optical properties of a DSSL show that, in spite of impurity scattering, 
well behaved plasmon modes could be observed in a DSSL because of the tunable carrier 
density and the nearly perfect separation of electrons and holes [3,4,17]. It has been 
demonstrated that, for a 2D electron gas consisting of a random impurity potential, plasma 
oscillations can be observed for reasonably high values of carrier density for restricted 
values of the wavevector [NI. At small carrier densities, the system enters into a diffusive 
regime of carrier dynamics which prohibit collective excitations of carriers. Another notable 
difference between a DSSL and a CSSL is the electron (hole) layer boundaries. Unlike a 
CSSL, the electron (hole) layer boundaries in a DSSL are not abrupt. 

We present in this paper a model calculation of the density-density correlation function 
(DDCF), for a GaAs DSSL, to study the plasmon-phonon-coupled modes and their 
lineshapes. We make the following assumptions. 
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(i) the DSSL can be modelled to be infinite periodic sequence of electron and hole 
layers embedded alternately in a polarizable host media of d i e l e c ~ c  function E(@)  and of 
a unit cell (which comprises one electron and one hole layer) of length d along the z axis. 

(ii) The electrons and holes in the GaAs DSSL are mainly confined to their respective 
layers and their motion along the z axis can be described with the use of wavefunctions and 
energy eigenvalues of the harmonic oscillator. 

(iii) Confinement of electrons (holes) results in the well separated 2D energy subbands 
which can be represented by 2D free-electron-lie bands of effective mass m: for an electron 
and mi for a hole. 

(iv) The density n,T, of 2D electrons and the density n.?* of holes are reasonably high, 
giving rise to both intrasubband and intersubband transitions. The strong charge carrier- 
impurity scattering due to the presence of doping impurities in electron and hole layers 
gives rise to a large value of damping parameter for plasma oscillations. This is taken into 
account by choosing an appropriate form of 2D polarizabilities. 

The remaining part of the paper is organized as follows. Section 2 deals with the 
calculation of the DDCF and the lineshapes. We present our results and their discussion in 
section 3. Finally, our work is summarized in section 4. 

2. Density-density correlation function and the lineshapes 

The lineshapes for different coupled plasmon-phonon modes can be determined from the 
imaginary part of the dynamical polarizability x(q .  o, z, z’), which can be obtained by 
solving the integral equation [14] 

Here, P ( q ,  w ,  z, z‘) is the polarizability in the absence of the Coulomb electron-electron 
interaction V .  The phonon screened electron-electron interaction is given by [14] 
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The E ( @ )  for an infinite crystal can be given by 
0 2  - m i o  + iy,,o 
W2 - + iy,,o 

&(W)  = E m  (3) 

where WLO and WTO are the longitudinal optical and transverse optical phonon frequencies, 
respectively. &- is the optical dielectric COnStant and Ypk is the phenomenological phonon 
linewidth. 

We solve equation (1) for a GaAs DSSL by assigning the width de to an electron layer 
and the width dk to a hole layer. The width of the undoped layer between an electron and 
a hole layer is taken to be di. The d is the sum of de, dk and Zd;. The ordinate of the Ith 
unit cell can be defined as 

z = Id + Rj + t with - d j / 2  6 t < d j / 2 .  (4) 
here Rj is the distance of the jth layer of the Ith unit cell from the bottom of cell. j varies 
over the unit cell and can take two values. As has been mentioned earlier, both iutrasubband 
as well as intersubband transitions are possible. One can use the diagonal approximation 
to decouple the different subband transitions [19]. Equation (1) can be transformed into 
[14,15] 

with 

(6) v f j (q ,  I ,  l‘, f, t‘) = - exp[-ql(l - 1’)d + Rij + (t - t’)ll 
where Rij = R, - R j .  x i j  is a 2 x 2 matrix in i and j. Each element of matrix x i j  is also 
a matrix. The size of the matrix is determined by the number of subbands which are to 
be considered in the calculation. For simplicity, we consider only two subbands (ground 
and first excited subband) and confined to the intrasubband transitions (0 -+ 0) within the 
ground subband and the intersubband transitions (0 --f 1) between the ground subband and 
the first excited subband. Thus, each element of the matrix x i j  decomposes into two terms, 
one of which corresponds to intrasubband transitions, while the other corresponds to the 
s inter sub band transitions. Equation (5) can now be simplified with the use of discrete Fourier 
transforms for obtaining the lineshapes of different coupled plasmon-phonon modes. The 
lineshapes can be given by [S,  151 

2ne2 
q E @ )  

L ( q , k z , W )  = I m [ X ~ ~ e ( q , w , k ~ ) f X ~ k ( q , W , k r ) + X h ~ ( 4 . @ , k r )  +Xkk(q,W1kz)l. 0) 
Here kz is the component of the wavevector along the direction of growth of the DSSL, while 
q is the component of the wavevector along the plane of an electron (hole) layer. Also, k, is 
related to discrete variable I .  In equation (7), xee and Xkk  are the intralayer polarizabilities for 
electrons and for holes, respectively, while Xek and Xke represent interlayer polarizabilities. 
Each Of X e e ,  Xhh. Xek and X k e  has tWO terms given by 

1 

x . .  ‘I - E x ^  - 11 (8) 
A=O 

where A is a composite subband index. The A = 0 represents 0 + 0 transitions while A = 1 
represents 0 + 1 transitions. We obtain 
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where 

In writing equations (S)-(12), we suppressed the explicit dependence on q ,  w and kz for 
brevity. we,, Whh, w,h and Whr gVen by 

with W;j(q,k,)  Wji(q.  -k2) W;(q,k,) and IRee[ [Rhhl = 0. The matrix elements 
H i ( q ) ,  F i ( q )  and Ah(k,) are defined and are explicitly evaluated with the use of harmonic 
oscillator wavefunctions for both electrons and holes in the appendiu. 

PA and Pih are non-interacting polarizabilities for 2D electron and hole gases, 
respectively. The existence of doping impurities in electron (hole) layers causes strong 
scattering centres for electrons (holes). In the presence of a random impurity potential, PA 
and Ph:, for intrasubband transitions can be given by [IS] 

where Noj and vj are the density of states at the Fermi level and the damping constant, 
respectively. u ~ j  is the Fermi velocity for electrons (holes). It should be mentioned that 
equation (14) is valid for q < kF and it reduces to the usual WA 2D polarizability [I91 
for large w- and small q-values. The intersubband transitions can be introduced through 
111,161 

p!. = 2nsjE10 
'I E:oj - w ( o +  (iyj) 

where Eloj is the energy band gap between the ground subband and the first excited subband 
of elemons or holes and it is defined as Eloj = Elj - EOJ with 

Elj and Eoj are the energy eigenvalues of the harmonic oscillator. N D / A  is the number of 
donors or acceptors per unit volume. 
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3. Results and discussion 
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Equation (7) yields Iineshapes of different plasmon-phonon-coupled modes. The maxima 
in L(q, w ,  k,) and zeros of I&'(q, w ,  k,)I correspond to the frequencies of coupled plasmon- 
phonon modes. [&, w ,  kz)I = 0 give rise to four roots of w as a function of q and k,, 
for each value of A. For A = 0, these are known as frequencies of coupled intrasubband 
hole plasmon-phonon modes (L;  and L:) and of coupled intrasubband electron plasmon- 
phonon modes (L; and Lz) .  The coupled modes of intersubband hole plasmons and 
phonons (Z; and Zt) and of intersubband electron plasmons and phonons (I; and Z:) 
are obtained for A = 1; The coupled plasmon-phonon modesare plotted as a function 
of qd  for all possible values of cos(k,d) in figure 1. For computation of these coupled 
modes, we used E~ = 10.9, de = 600 A, d h  = 500 A, dj = 100 A, m: = 0.07m,, 
mi = 0.7m,, NA =~ 10l2 cm- , y,,h = 0.1 meV, 

= 38.8 meV, Eloh  = 12.3 meV, @LO = 36.57 meV and @TO = 33.845 meV. ye 
and yh are estimated using yj = e/m;pj, where pj is the mobility. We estimate that 
ye = 5 meV and yh = 4.5 meV for the above-mentioned values of nSe and nsh [3]. Each 
of Lh, L;, Z;, L t ,  L: and Z: gives rise to a full band of frequencies, while I; and Zt 
do not form a band. L; forms the widest band. All the plasmon modes in the L; band 
and some of plasmon modes in the L; band are approximately proportional to (q2 - q:)'/' 
and they vanish as q f qc, a critical value of q.  The lower edge of the L; and 1; bands 
corresponds to k,d = 0, while that of the L; and Z$ bands occur at k,d = n. From the 
figure we notice that, for k,d + 0, the intrasubband plasmon modes of electron gas behave 
like the plasmons of a 3D free-electron gas and they are well defined even at q + 0. On 
&e other hand, none of inhasubband plasmons of hole gas behaves like the plasmon mode 
of a 3D free hole gas. It should be noted here that, for k,d + 0, the electron (hole) layers 
strongly interact with each other and a DSSL behaves like a two-component 3D free-carrier 
gas which yields one optical plasmon mode and one soft plasmon mode which goes to zero 
as q + qc. The L; band is well separated from the L; band. The L:, L:, Zt and Z; 
bands originate from the interaction of GaAs phonons with different kinds of plasmon. The 
intrasubband and intersubband plasmons of the hole gas and the intrasubband plasmons of 
the electron gas interact weakly with phonons, while the intersubband electron plasmons 
interact strongly with phonons. Therefore, the bands of L:, L z  and Zh+ almost overlap each 
other. 

We have plotted q,d as a function of k,d for both electron and hole intrasubband 
plasmons in figure 2, with the use of the above-mentioned values for the parameters. It is 
seen from equations (IO) and (13) that all possible values of cos(k,d) lie in the0 < k,d < x 
range. The figure shows that qcd increases for electron intrasubband plasmons and decreases 
for hole intrasubband plasmons on increasing k,d. For a hole gas, the q,d-values are 1.66 
and 1.45 at k,d = 0 and k,d = x ,  respectively, while, for an electron gas, q,d varies from 
zero to 0.45 for 0 < k,d < z. In a typical light-scattering experiment, k, % 7 x los cm-', 
which corresponds to k,d % 9.1. Our calculation suggests that one cannot observe hole 
intrasubband plasmons~for q ~ e  1.114 x 1@ cm-' and electron intrasubband plasmons for 
q < 0.37 x lo5 cm-', in a typical light-scattering experiment. It should be noted here that 
the value of the damping parameter also severely affects the q,-value for the intrasubband 
plasmon mode. yh and ye are mainly governed by the doping impurity potential. 

In figure 3, we have plotted the intrasubband plasma frequency as a function of damping 
parameter for both the electron and the hole gas for qd  = 1.47 and k,d = 9.1. The figure 
shows that the intrasubband plasmon energy decreases with increasing damping parameter 
and it vanishes at some critical value. The critical value of the hole intrasubband plasmon 

2 N D  = loL8 ~ m - ~ ,  n,, = 
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Figure 1. The coupled inuasubband plasmon-phonon modes (L;. LL, L; and L:) and the 
coupled intenubbard plasmon-phonon modes (I;, I C .  I; and I:). 

mode is much smaller than that for the electron intrasubband plasmon mode. It should 
be mentioned that the carrier density and the damping parameter are related to each other. 
However, we have used a fixed value of n,, = nsh = 10l2 cm-’ to compute the curves which 
are shown in figure 3. The figure suggests that, for a given doping concentration, yh and 
ye should be tailored (via modulation of the space-charge potential and band edge of host 
material) in such a manner that one could observe well behaved intrasubband plasmons 
for both electrons and holes, in a typical light-scattering experiment. From the above 
discussions, we note that the strong charge carrier-impurity scattering (which is taken into 
account through polarizability and the matrix elements) severely affects the intrasubband 
plasmons. 

The second term on the right-hand side of equation (10) describes the coupling between 
the plasma oscillations of the electron and hole gas. For k,d + IT, the electron and hole 
gas layers couple loosely with each other and the plasma oscillations of each layer are 
almost independent of that of the others. The coupling betwen plasma oscillations of two 
adjoining electron and hole gas layers is negligibly small, for k,d = IT. On the other hand, 
the system exhibits a strong interaction between plasma oscillations of elect” and hole 
gas layers (therefore the coupling term of equation (IO) makes a substantial contribution) 
for k,d + 0. We have noticed that an analytical solution of equation (IO) is not possible 
for h = 0. In order to obtain further insight into the intrasubband plasmons, we consider 
a static limit of equation (3) and take a k,d + IT h i t  of equation (IO). The intrasubband 
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Damping constant Imev  ) 

Figure 2. Critical q-values as a function of k,d for 
intnsubband plasmons of a hole gas (-) and an 
electron gas (- - - -1. 

Figure 3. The intnsubband plasma energy as a function of 
the damping parameter for a hole gas (-) and M elecmn 
gas (- - - -), arq = 1.13~10~ cm-’ and k, = 7x10’ a-’, 

plasma frequency for the electron (hole) gas can now be given by 

1 t a J j ( q ) P ; ( o )  = 0 (1W 

ajj(q) = y [ H $ ( q )  - Fi(q)I1- s(~)II .  (18b) 

= Tz2/m;ez is the effective Bohr radius for an electron (hole), EO is the static value 

where 
2 

q f f j  EO 

Here. 
of equation (3) and s(q)  is defined by 

sinh(qd) 
s(q) = cosh(&) + 1 

Equation (18a) yields 

Looking at equation (19), we note the following: 

(i) woj(q) acquires a wavevector-dependent imaginary part for a DSSL, which is not 

(ii) o p j ( q )  is softened at small q,  as its frequencies a e  lower than the corresponding 

(iii) w,j(q) exists for q > qc where qc satisfies 

the case for a CSSL. 

frequencies for a CSSL, which can be given by q2ugj ( l  + c ~ , ~ ) ’ l ~ ~ i n  our notation; 

q:u;j(l + 2ff j j (qc))  = y;.. ~. . ( 2 0 4  
(iv) w,j(q) can be a well behaved plasmon mode if 

42u:,11 + k j j ( q ) l  > 2y;. 
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It should be mentioned here that one also obtains qc defined by a equation similar to 
equation (20). even if one employs the usual RPA polarizability in place of that given by 
equation (14). It should be noted that some of the values of q > qc may not satisfy inequality 
(206). Over such a q-range, plasma oscillations are not well defined and they lose their 
physical meaning. For a modulation doped CSSL, yj is very small (about 0.1 meV), giving 
rise to qc % 0. One therefore can obtain well behaved acoustic plasmons in a CSSL at all 
small q-values. In order to look into the asymptotics of our results, we computed cuj,(q) 
as a function of q and have observed that cujj(q) is almost independent of q for values of 
q close to q- It can be seen from equations (A7), (A9) and (18c) that, for small q-values, 
F: - Ho - 1 and S(q) - qd/2, which gives rise to ajj(q) - d/a;&o. The asymptotic 
value of o p j ( q )  can now be given by 

JJ 

r -.11/2 

where 

For very small values of y,, qc + 0 and equation (2la) reduces to the well known result 
obtained for a CSSL [5,11, 141. Equation (21b) yields q,d = 0.45 for electron plasmons 
and q,d = 1.37 for hole plasmons. 

The use of equation (15) to describe intersubband plasmons is well justified because 
it very well represents the intersubband msitions even for high values of yj. The effect 
of charge carrier-impurity scattering on intersubband plasmons has been incorporated in 
various matrix elements. The matrix elements, which are given in the appendix, significantly 
differ from the corresponding matrix elements which had been used for a modulation doped 
CSSL. The intersubband plasmons in a DSSL are weli behaved for all k,d-values. 

We computed L(q,w,k,) as a function of w for q =~1.13  x lo5 cm-' and q = 
2 x lo5 cm-' for kz = 7 x lo5 cm-'. The values of other parameters are taken to be 
those used previously. Our computed -Im[L(q, o, k,)] are plotted in figure 4. The figure 
demonstrates that the lineshapes of L;, L;, Z;, 2,- and L: are well resolved, while those 
of I:, L t  and L: overlap each other, for both q-values. The lineshapes at L; and L; 
(which correspond to inttasubband plamons) have a finite half-width and a reasonable peak 
height. AI1 these lineshapes therefore could be observed in the light-scattering experiments. 

Our calculation incorporates the background lattice vibrations in a phenomenological 
manner via equation (3). When the w + 0 limit of equations (14) and (15) was substituted 
into equation (lo), we obtain two values of w on solving each of Id'I = 0 and = 0 
for a given value of qd  and of k,d. These four values of w correspond to the optical 
phonon frequencies of the polar GaAs lattice. Our computed optical phonon frequencies 
at q = 2 x lo5 cm-' and kz = 7 x lo5 cm-' are 33.87 meV, 34.08 meV, 35 meV 
and 35.44 meV. The calculated phonon frequencies qualitatively agree with the bulk 
GaAs phonon frequencies observed in a recent light-scattering experiment performed on 
an ultrathin GaAs/AIAs superlattice [7]. It should be noted that most light-scattering 
experiments have been performed on GaAslAlAs superlattices. The doped superlattices 
consist of homointerfaces while compositional superlattices such as GaAs/AIAs consist of 
heterointerfaces. A GaAs/AlAs superlattice supports both bulk as well as interface phonons, 
while the doped GaAs superlattice can support bulk phonon modes. 
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Energy (meV 1 
Figure 4. Plot of - Im(q. U ,  kz) as a function of w for q = 1.13 x IOs cm-' (-) and for 
q = 2 x IOs cm-' (- - - -1 at k, = 7 x los cm-l. 

4. Conclusions 

We performed a model calculation of DDCF for a GaAs DSSL to study the plasmon- 
phonon-coupled modes and the lineshapes of coupled modes by taking into account the 
strong charge carrier-impurity scattering from the potential of the random impurities and 
the diffusive nature of the boundaries of the electron (hole) layers. Our model calculation 
demonstrates that the strong scattering of electrons (holes) from doped impurities has a 
marked influence on both the intrasubband and the intersubband plasmons in a DSSL. The 
plasmons of a DSSL significantly differ from~electron (hole) plasmons in a modulation 
doped CSSL such as Ga,Inl-,As/GaAs,Sbl-,. The intrasubband plasmon frequency for 
a DSSL has a wavevector-dependent imaginary part which can become comparable with 
the red part, for certain values of q and kz.  For this case, plasma oscillations are not well 
defined and they lose their physical meaning. It is very unlikely that any of the plasmon 
modes of a DSSL' behave like an acoustic plasmon mode because of the high value of the 
damping parameter. qc is always smaller for electron plasmons than for hole plasmous. 
The positions and peak heights of the lineshapes of hole plasmons are smaller than those 
of electron plasmons. For the right choice for the values of the DSSL parameters, the 
lineshapes of different coupled plasmon-phonon modes are well separated from each other. 
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These lineshapes could be observed in a typical light-scattering experiment on a GaAs 
DSSL. 
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Appendix 

A$(k,) is defined as 

while the matrix elements H j j ( q )  are given by 
dr12 dI/Z 

H?.( ,I q ) - - ldj12 dt l+P dr' exp(-qlt - t'I)@,?(Wj%'). (-42) 

Here @)@) is the product of two envelope functions. Fjj is given by equation (A2) on 
replacing qlf - f ' I  by q(t - t').  A:<, Aih, Ai,,  Hie, Hih ,  FA, Pih, Fie and Fih are 
evaluated using the envelope functions. 

(A31 1 -  I O  

where $7 are the harmonic oscillator wave functions, which can be given by 
@; = kql' @j - 4j$ 

#'! J = N"exp(-oljz2/2)Hn(orjf (A41 
with 

ffj is defined by 

On performing the integration in equations (Al) and (A2) with the use of equations (A3) 
and (A4) we obtain 

A: and AIj can be obtained from equations (A7) and (AS), respectively, on replacing q by 
ik,. 
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